Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means

نویسندگان

  • Tie-Hong Zhao
  • Yu-Ming Chu
  • Yun-Liang Jiang
  • Yong-Min Li
  • Khalil Ezzinbi
چکیده

and Applied Analysis 3 Lemma 1. The double inequality

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refinements of Bounds for Neuman Means in Terms of Arithmetic and Contraharmonic Means

In this paper, we present the sharp upper and lower bounds for the Neuman means SAC and SCA in terms of the the arithmetic mean A and contraharmonic mean C . The given results are the improvements of some known results. Mathematics subject classification (2010): 26E60.

متن کامل

Sharp Inequalities Involving Neuman–sándor and Logarithmic Means

Sharp bounds for the Neuman-Sándor mean and for the logarithmic mean are established. The bounding quantities are the one-parameter bivariate means called the p-means. In this paper best values of the parameters of the bounding means are obtained. Mathematics subject classification (2010): 26E60, 26D07, 26D20.

متن کامل

Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean

and Applied Analysis 3 If f(x)/g(x) is strictly monotone, then the monotonicity in the conclusion is also strict. Lemma 2. Let u, α ∈ (0, 1) and f u,α (x) = ux 2 − (1 − α) ( x arctanx − 1) . (12) Then f u,α (x) > 0 for all x ∈ (0, 1) if and only if u ≥ (1 − α)/3 andf u,α (x) < 0 for allx ∈ (0, 1) if and only if u ≤ (1−α)(4/π− 1). Proof. From (12), one has f u,α (0 + ) = 0, (13) f u,α (1 − ) = u...

متن کامل

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

Optimal Bounds for Neuman–sándor Mean in Terms of the Convex Combination of Logarithmic and Quadratic or Contra–harmonic Means

In this article, we present the least values α1 , α2 , and the greatest values β1 , β2 such that the double inequalities α1L(a,b)+(1−α1)Q(a,b) < M(a,b) < β1L(a,b)+(1−β1)Q(a,b) α2L(a,b)+(1−α2)C(a,b) < M(a,b) < β2L(a,b)+(1−β2)C(a,b) hold for all a,b > 0 with a = b , where L(a,b) , M(a,b) , Q(a,b) and C(a,b) are respectively the logarithmic, Neuman-Sándor, quadratic and contra-harmonic means of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014